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This paper describes an extension of the GENSMAC code for solving two-dimen-
sional free surface flows to axisymmetric flows. Like GENSMAC the technique is
finite difference based and embodies, but considerably extends, the SMAC (simpli-
fied marker and cell) ideas. It incorporates adaptive time stepping and an accurate
representation of the free surfaces while at the same time only uses surface particles
to define the free surfaces, greatly increasing the computational speed; in addition,
it employs a graphic interface with solid modeling techniques to provide enhanced
three-dimensional visualization. Various simulations are undertaken to illustrate and
validate typical flows. Both G. I. Taylor's viscous jet plunging into a fluid and a
liquid drop splashing onto a fluid are simulated. Also, the important industrial ap-
plication of container filling is illustrated. Finally, a comparison is made with the
linear theory of standing waves and the code is validated by a numerical convergence
study. (© 2000 Academic Press
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tions; finite difference method; axisymmetric flows.

1. INTRODUCTION

Industrial applications of fluid flows with free surfaces are ubiquitous: applications i
clude casting, container filling, extrusion, and fluid jetting devices. The accurate deter
nation of these free surfaces is important especially if the flow itself is determined by
position and curvature of the free surface as it would be if surface tension were significar
is also essential that any humerical algorithm can cope with merging, folding, or separa
of free surfaces.

Over the years a number of computational techniques have been developed for sol
free surface flows (see, e.g., Shstyal.[1]). These may be broadly divided into two cate-
gories: interface tracking methods and front-capturing methods. Front or shock-captu
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methods are usually associated with compressible fluids; these methods are now extre
sophisticated, explicitly enforcing monotonicity through a nonlinear step while simultar
ously maintaining high order. The reader is referred, for instance, to the books by LeVe
[2] and Hirsch [3].

Tracking methods may be subdivided into front-tracking and volume-tracking. If hic
accuracy is required it is generally accepted that front-tracking is needed, when the
terface itself is described by additional computational elements. Although the basic i
goes back to Richtmyer and Morton [4], its primary implementation has been throu
the work of Glimm and his co-workers (see, e.g., Gliretral. [5]). They represent the
moving front by a connected set of points which form a moving internal boundary. -
calculate the evolution inside the fluid in the vicinity of the interface, an irregular grid
constructed and a special finite difference stencil is used on these irregular grids. Autl
who have used this approach to different flow regimes include Céeah. [6], Daripa
et al. [7], Moretti [8], and Peskin [9] (also Fauci and Peskin [10] and Fogelson ar
Peskin [11]). In Peskin’s work the connected set of particles carry forces which are
justed to achieve a specific velocity at the interface. Within this category one might inclt
the so-called boundary integral or boundary element methods and the vortex-in-cell (V
method. Boundary integral methods can be effective when inertia forces are neglig
(see, for instance, Baker and Moore [12] or Tsai and Miksis [13] who solve successft
the axisymmetric problem of gas bubbles rising in a liquid). The vortex-in-cell metho
normally used for homogeneous flows, has been extended to cope with weakly strati
flows (Meng and Thomson [14]) and arbitrary stratification (Tryggvason [15]). More re
cently Unverdi and Tryggvason [16] described a front-tracking method for incompressit
viscous, multifluid flows in which the interface is explicitly tracked but maintains a dis
tinct thickness dependent upon the mesh size. The main advantage of this approach i
interfaces can interact in a rather natural way, since gradients simply add or cancel a
grid distribution is constructed from the information carried by the tracked front. Anoth
approach which has found favor is the level set approach. This would appear to have |
first introduced by Osher and Sethian [17]. The level set function is typically a smoc
function which eliminates the sorts of problems, such as oscillations, that conventional
ference schemes often have. It also removes having to add or subtract points to a mc
grid and it automatically takes care of merging and breaking up of an interface. More
cently, Sussmaat al.[18] have combined the level set approach with projection methoc
(see, e.g., Bell and Marcus [19]) to avoid explicitly tracking the interface. A level set a
proach has also been applied to three-dimensional two-phase flows by Beaux and Ban
[20].

Volume-tracking methods can be further subdivided into marker-and-cell (MAC) ai
volume-of-fluid (VOF) methods. Indeed, the original MAC method was one of the first su
tracking methods dating back to Harlow and Welch [21]. Both these classes of methods
still popular and, although they suffer from not being able to accurately provide a surf
interface, arguably thisis lessimportant today—a QD0 x 100 grid is possible on agood
workstation and will certainly be easily feasible on even a modest one in the next few ye:
With the MAC method virtual marker particles are pushed forward according to the Euleri
fluid calculation (with appropriate bilinear interpolation for the velocity components) and
is these that define the fluid region and hence the interface. The simplified-marker-and
(SMAC) was introduced by Amsden and Harlow [22]. Over the intervening years resea
into this method has continued; see, for example, Miyata [23], Viecelli [24], and Hirt at
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Shannon [25] who also used the immersed boundary technique to handle its interac
with the underlying grid.

Possibly the first volume-in-fluid type code was the simple line interface calculati
(SLIC) of Noh and Woodward [27]. This was employed by Chorin [28] to model flam
propagation and later by Ghoniartal.[29] and Sethian [30]to model turbulent combustion.
However, one usually associates Hirt and Nichols [31] with the VOF method, whereb
volume fraction is convected forward with the fluid. This then led to many variants a
descendants, namely, SOLA-VOF (Nichdas al. [32]), NASA-VOF 2D (Torreyet al.
[33]), NASA-VOF3D (Torreyet al.[34]), RIPPLE (Kothe and Mjolsness [35], Ko#t al.
[36]) and Flow3D (Hirt [37]). These have been widely used in industrial application
Most recently, an interesting idea of a second order VOF tracking method, employing
approximate projection operator, has been put forward by Puekelt[38].

Recently, Tone’and McKee [39], motivated by industrial filling processes, returned to tt
SMAC methodology and developed the GENSMAC code. GENSMAC simulates incol
pressible time dependent fluid flows in Cartesian coordinates within arbitrary, user-speci
two-dimensional domains. In addition, it can handle free-slip and no-slip boundary c
ditions, there can be a number of inflows and outflows, and a number of arbitrary sha
obstacles can be contained within the general flow domain. However, although GENSM
has a wide range of applicability it cannot deal with axisymmetric flows nor can it displ:
output in a three-dimensional form. This paper describes briefly how GENSMAC may
modified to cope with axisymmetric flows; it also discusses how the techniques of sc
modeling may be applied through a graphic interface to permit enhanced flow visualizati

2. BASIC EQUATIONS

We consider incompressible axisymmetric Newtonian flows. The governing equatic
are the nondimensional mass and momentum equations in conservative form whic
cylindrical coordinates may be written as [22]

10(ru) dv

- v _ 1
r or 0z (1)
au  13(ru®d 3w 9 19 /ou dv 1
—+- =P (A + —0 (2
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where Re=UL /v and Fr=U/.,/Lg denote the Reynolds number, and the Froude numbe
respectively. Heré. andU are the length and velocity scales, respectivelg, a reference
viscosity, andy denotes the gravitational constagt- |g|, whereg = (g, g,). Furthermore,
u=(u,v)" are the radial and vertical components of velocity whilés the pressure per
unit density.

3. METHOD OF SOLUTION

In order to solve Egs. (1)—(3) we employ the GENSMAC methodology. In particule
in calculatingli(r, z, t) in step 2 we employ an efficient adaptive time stepping routine.
more complete description may be found in [39].
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Itis supposed that at a given tirhg the velocity fieldu(r, z, to) is known and boundary
conditions for the velocity and pressure are given. The updated velocityiield, t) at
t =tg + &t is calculated as follows:

1. Let p(r, z, t) be a pressure field which satisfies the correct pressure condition
the free surface. This pressure field is computed according to the stress conditions give
Section 4.2.

2. Calculate the intermediate velocity fieldr, z, t) from the explicitly discretized
form of

Gl 13(rud)  auv) P 1 a [du  dv 1

= |- - L (L A A 4
at rooor 8z  dr  Redz\adz ar FrP™ |y

v 13(ruv) a@w?®» ap 1139 du A 1

— === - - — — 5
at [ ror oz 9z merar\"\az ar)) TEe% . ©

with (r, z, to) = u(r, z, tp) using the correct boundary conditions fa(r, z, tp). It can be
shown [40] thafi(r, z, t) possesses the correct vorticity at timélowever,i(r, z, t) does
not satisfy (1). Let

ucr,zt)y =10,z t) — Vy(r,z1t) (6)
with
V2 (r,z,t) = V-0, z, t). (7)

Thus,u(r, z, t) now satisfies (1) and the vorticity remains unchanged. Theraidrez, t)
is identified as the updated velocity field at tite

3. Solve the Poisson equation (7).

4. Compute the velocity (6).

5. Compute the pressure. It can be shown [40] that the pressure is given by

p(r,zt) = p(r,z,t) + ¥ (r, z, t)/5t. (8)
6. Update the positions of the marker particles.

The last step in the calculation involves moving the marker particles to their new positio
These are virtual particles whose coordinates are stored and updated at the end of each
by solving

dr " dz
dt — 7 dt
by Euler's method. This provides a particle with its new coordinates, allowing us to c
termine whether or not it moved to a new computational cell or if it left the containme

region through an outlet. Only marker patrticles on the surface are considered; Sectior
will describe how this is achieved.

v

3.1. Boundary Conditions

Boundary conditions must be imposed both on fixed boundaries and on free surfaces
fixed boundaries we can impose no-slip, free-slip, prescribed inflow, prescribed outfls
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and continuative outflow (for details, see [39, 41]). The implementation of these bound
conditions is performed in the same way as in the GENSMAC code.

The appropriate free surface boundary conditions are the vanishing of the normal
the tangential stresses which in the absence of surface tension are (see Batchelol
p. 150])

n-oc-n=20 (9)
m-o-n=0, (20)

wheren andm are local unit normal and tangential vectors anig the stress tensor given

by
2 [0y vj
% =P Relax, Tax )

These conditions are applied by making accurate local finite difference approximations
the free surface [39] and will be given in Section 4.2. The appropriate boundary conditic
for the Poisson equation (7) (see [22]) are

0
a—f =0 onfixed boundaries andy» = 0 on the free surface. (12)

4. BASIC FINITE DIFFERENCE EQUATIONS

To implement the method presented in Section 3 we employ the finite difference met
as follows.

A staggered grid is employed. A typical cell is as shown in Fig. 1. The variables, press
fi j and the added velocity potentid] j, are positioned at the cell center whilg; and
vj,j are staggered by a translationsof 2 andéz/2, respectively.

The momentum equations (4) and (5) are discretized and applied atribdes and
v-nodes, respectively. A forward difference in time is used for the time derivatives and |
linear spatial terms on the right-hand side are approximated by central differences; for
convection terms in (4) and (5) the ZIP (see [22]) form is adopted. For the flux t@mms

Vij+1/2
/

p ..
Ui 112, D “’w
g

] Uir1

J

Vij-1/2

FIG. 1. Computational cell.
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simple averages are performed; for instance,

) (Y Ui Vg4l T Vil
I+%.]+% - 2 2 :

Thus, the finite difference approximations to (4) and (5) become [22]
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Herer; denotessr. The Poisson equation (7) in cylindrical coordinates becomes
(N *y =D,
rar\ or 022

18(ru)
roor Jr82'

where

D= (14)

We point out that direct discretization of (14) would lead to a nonsymmmetric linear sy
tem which would be required to be solved by, for example, the biconjugate gradient met|
which is considerably less efficient than the conjugate gradient method. However, by rev
ing (14) in the form

Ay Y =
ar( 8r)+rﬁ_rD (15)

and discretizing (15) at the surface cell center we obtain (assuiniagd z)

—TiYi o1 = F_aiong + AN = aYieng —ivijea = —hor?Dij,  (16)
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where

D ==
] rl

~ 1 <ri+%ui+%,j - ri—%ui—%,j) n Vij+1 — Vi1

It is now easily seen that (16) leads to a linear system possessing a symmmetric pos
definite matrix and consequently we employ the conjugate gradient method as impleme
in GENSMAC for solving this linear system.

4.1. Cell Flagging

As the fluid is continuously moving, a procedure for identifying the fluid region an
the free surface is employed. To accommodate this, the cells within the mesh are flag
according to whether they are surface cells (S), full cells (F), empty cells (E), bound:
cells (B), inflow cells (1), or outflow cells (O). A detailed description can be found in [39]

4.2. Free Surface Stress Conditions

The stress conditions (9), (10) can be written as

2 [du ov au  dv
p- Re|:3|’ nrz + 7azn§ + (82 + 78[' )nrnz:| = 0, (17)
2 au v au  adv
ReKBr B az>”f”2+ (w*m)(”f‘”i)} - 4o

In order to apply these conditions we follow the approximations adopted by GENSM/
[39]; namely, we consider two types of free surface orientations as follows:

(a) Horizontal/vertical surfaces: These surfaces are identified by surface cells ha
only one side contiguous with empty cells. For these cells we assume that the normal ve
is pointing toward the empty cell in which case we take (n;, 0) or n=(0, n,). The
choice is made according to which side is contiguous with the empty cell. For instance,
surface cell has only the top side contiguous with an empty cell (see Fig. 2), then we t

E E
. Uirij+l
Vij+l/2
O =
Pij
I e
o |
=)

FIG. 2. Surface cell with only the top side contiguous with an empty cell.
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n= (0, 1). Equations (17) and (18) then reduce to

2 [ov
au  aJdv
(E + y) =0. (20)

It can be seen that when computing the tilde velocities through (12) and (13) the pres:
fi ; and the values oji%,”l andvi,H% at the empty cell faces are required (see Fig. 2)
These can be obtained from (19), (20) and the mass conservation equation (1) as foll
First, by applying (1) at the surface cell center we get

1 1U|+ Ni I’i 1u|77j n vi,j+% _Ui,jf% ~0
I or Y4

which gives

§z1

Vi1 =0 _1———(F, 1U_1:—TF_1U_1 ).
ij+3 bi-3 T sy rl( $Hi+3. i-3 l—%,J)

Now, discretizing (20) at the positiain+ 3, j + 3) we obtain

Upljrr Uil Vigaj+d = Vij+d
+ =0
6z or
which yields
6z
Uit lj+1 = Uil — 5T(vi+1,j+% - vi,j+%)'

Once the velocities have been computed the preggyréollows from (19) applied at the

surface cell center, giving
B i = 2 (Vij+i —Vij-1
"7 Re 8z '

Other types of configurations of surface cells having only one side contiguous with em
cells are treated similarly.

(b) 45-sloped surface: These surfaces are identified by surface cells having two
jacent faces contiguous with empty cells. For these ceIIs we assume that the normal ve
makes 45 with the axes in which case we take= (& :tf) The sign is chosen ac-
cording to which faces are contiguous with empty ceIIs For instance, let us consider
surface cell in Fig. 3. For this cell we take:( >,y ) and introducing it into (17) and

(18), we obtain
1 [au n ov 4 au n dv
P ar 9z az  or

au  dv
ar 0z

0, (21)

0. (22)
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FIG. 3. Surface cell having the top and right sides contiguous with empty cells.

As we can see in Fig. 3, the valueswpf 1 ; andv; ;, 1 are required. These are obtained by
applying (22) and the mass conservation equation (1) at the surface cell center to give

u”%’j(;ui’%’j g R g (23)
1 /FpaUipyy —otUi_1 Vij+1 Vi3
— . . : . =0. 24
ri < sr + 8z (24)

Equations (23) and (24) provide(2 x 2)-linear system foui%j andvi,H%, yielding

ri —l—l’F%
Uit = mui_;,j, (25)
8z
Ui,j-l—% :Ui’j_%‘ka*r(ui_,r%,j _ui—%,j)' (26)

Once the velocities at the empty cell faces have been computed, the pressure follows
(21) applied at the surface cell center, giving

B = 1 Uty — Uit n Vij+1 — V-1
"1 7 Re Sr 5z
L Uiy FUig = Uiy = Uit
2 8z
Vij4l TV o1 = Vgl — Vg1
+ J 2 ] 2 5r J 2 J 2 . (27)

For other configurations of surface cells with two adjacent sides contiguous with em
cells the values ofi, v, and p are obtained similarly.



450 TOME ET AL.

(c) Surface cells with three sides or two opposite sides contiguous with empty ce
These cells do not provide enough information to obtain an approximation for the u
normaln. If they appear during a calculation we set the pressure equal to zero and ad
at least one velocity on one of the empty cell faces so that mass is conserved. To minir
the appearance of such cells a finer mesh should be employed.

4.3. Particle Movement

In order to improve the computational efficiency of the code, individual modules
subprograms making up GENSMAC were analyzed. It was found that the particle moven
routine accounted for 40% of the total computational time. This is principally because
large number of particles, often as many as 20 per cell, are required to accurately repre
the fluid. In truth, internal particles are redundant since the surface particles define
boundary of the fluid and thus the fluid region itself. Thus, a new technique was devi
based upon representing the fluid by its boundary using a set of ordered lists defining
interior (and hence the exterior) of the fluid region. Each list stores connected informat
about the position of the particle, the type of cell it is located in, and the type of movem
the particle is entitled to make. For instance, a node of type “inflow” cannot move, wheree
node of type “surface” can move freely according to the velocity field. The fluid moveme
is obtained by solving = u(r, z,t), z=v(r, z, t), whereu, v are the velocities in the- and
z-directions, respectively. As andv are defined on a staggered grid, the velocity in eac
node is obtained from bilinear interpolation using the four nearest velocities. From time
time neighboring particles get too close or become separated by too great a distance. |
first case it is necessary to have a systematic means of particle removal while in the se
if a surface cell becomes devoid of particles, a new particle is created in that cell equidis
from its two nearest neighbors. This new technique, simple though it is, has enhancec
computational efficiency of the code enabling it to solve both the jet flow problem and t
splashing drop problem in reasonable time on a workstation.

4.4. Merging of Surfaces

As mentioned in Section 4.1, at each calculational cycle a reflagging algorithm is p
formed which updates the cells in the mesh. This reflagging algorithm is based on
following three steps:

1. During the particle movement all cells into which particles have moved are flagg
asS cells. Observe that during this step the pasdage S andE — S is performed (see
Scheme 1b).

2. Asweepis made onthe surface cells which do not contain particles (see Scheme
If a surface cell has no face which is contiguous with an empty cell then it becomes a
cell; otherwise, it becomes an empty cell. In this step the pasSagd- andS— E is
performed.

3. A sweep is made on the surface cells which contain particles (see Scheme 1d)
surface cell does not have any face contiguous with a empty cell then it becomes a full
In this step the passa@— F is performed.

Scheme 1 displays one step of particle evolution and illustrates how free surfaces are allc
to merge.



AXISYMMETRIC FREE SURFACE FLOWS 451

a b e

p Fla|ele|dls|F
‘;‘RSSEEEI’/SF FS%SE'Z(FF
i*;iiﬁi Fis YIS | FF
F+9EE+SFF FS+SETSFF
FFEE{SFF FS+SS¢SFF
F| ¥ E|E[4s F| F FS#g%SFF
AEEEREE Flsp9%|s|F|F
I EEEREE F |3/ E[sas | F|F
%| E| E| E|E 6| F g{SEED\SF

4 > D)

c Q d e »
F || E|E|$|F|F F|X EE|F|F|F
FIFhs|ES | F|F F|Fhs|EMS | F|F
F|F|{S¥|F|F|F FIF|(F§|F|F|F
F|F|¢S9[F|F|F F|F|eRR|F|F|F
F|F|¢SS|F | F|F F|F|eAR|F|F|F
F|F|gS}|F|F|F F|F|giR|F|F|F
FIFeSS|r|F|F F|FWsR|F|F|F
F.;/ES&FFF F;/ES&FFF
g{SEEb\FF ySEEb\FF

™ e

SCHEME 1. Configuration of the cellsin the mesh: (a) before particle movement, (b) after particle moveme
(c) after application of step 2 of reflagging, (d) after application of step 3 of reflagging.

5. IMPLEMENTATION NOTES

The inclusion of cylindrical coordinates into the GENSMAC code will only affect step
1, 2, and 3 in the computational procedure given in Section 3. Steps 4, 5, and 6 remair
same since the equations do not change from those of two-dimensional Cartesian fl
It was therefore necessary to write a routine to calculate the tilde pressur@(ieldt)
from the stress conditions on the free surface (see Section 4.2); it was further necesse
write a routine to calculate the tilde velociti€gr, z, t), v(r, z, t) from Eqgs. (12) and (13).
On the other hand the discretized Poisson equation can be solved by the same conj
gradient technique employed in GENSMAC. Thus, only a routine to assemble the ma
and the right-hand-side vector was required. Finally, it is necessary to obtain bounc
conditions foru(r, z, t) on the free surface: this was achieved by a routine which comput:
the velocities on empty cell faces using the equations given in Section 4.2. The bounc
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conditions on rigid boundaries were handled in exactly the same way as for the origi
GENSMAC code [39].

6. VISUALIZATION AND SOLID MODELING

The amount of data generated by modern CFD codes is such as to make flow visualize
essential. The visualization package associated with GENSMAC has the facility to coll
domain data and flow parameters and display them graphically.

In this paper a specific package (VisFreeFlow) was developed for modeling the fl
domain, for parameter reading, and for visualization of the results. The module for the fl
domain is achieved by means of a graphical editor comprising a drawing area, command
tons for interacting with the model, configuration options, and file management tools. E:
fluid containment region may be designed using polylines and arcs. Inflows and outflc
are specified and displayed using different colors. Additional interaction techniques suc
“dragging,” “rubberbanding,” and grid referencing have been made available. Domain d
can also be input as a connected coordinate list in the input file accepted by GENSM
The domain editor works independent of the simulation process, thereby allowing, for
ample, the same mould to be used in connection with distinct simulations. The param
reading module of VisFreeFlow provides a graphical user interface for inputing data si
as viscosity, length, and velocity scales. This module is based on the XWindows window
system, with motif-like dialogue structures, and has the following features readily availat
data validation, data filing, data retrieving, and the changing of flow data options. Itis a
responsible for triggering the simulation process.

The output of the simulation can be graphically displayed with the visualization modt
of VisFreeFlow. The visualizations that are possible include the cell grid, the veloci
and the pressure. The fluid flow itself is visualized by boundary tracing and space filli
Pressure can be visualized either using isolines or by color mapping of the pressure rar
The velocity field can be visualized either by vector plots that represent direction a
magnitude or by using isolines in a manner similar to that used for the pressure plots.
parameters for all of the visualization options may be interactively changed to obtain the |
resolution. Multiple viewing is also available by using different windows or by “layering
plots together. When detailed analysis is required a zoom in and out facility is available
addition, VisFreeFlow has animation facilities.

The VisFreeFlow software, described above, is restricted to demonstrating two-dim
sional fluid flow. However, the simulation data employed by VisFreeFlow can be us
by the visualization package VTK—The Visualization Toolkit [44]—to generate three
dimensional visualizations (see Figs. 7-11, 14, and 15). VTK provides a portable set of (
formats and visualization algorithms to operate on the data. The package can be tailore
user specific applications by building an appropriate interface. Itis object-orientated and
be programmed using C++ or Tcl/Tk. By taking advantage of the axisymmetric nature of
free surface flows under consideration, three-dimensional visualizations were generate
rotating about the-axis the available data defining the two-dimensional surface. The dz
from the two-dimensional fluid flow simulation were converted from their original forme
into a suitable VTK data format throtiga C program [45]. The VTK primitives used to
describe the container, the extrudor (where appropriate), and the fluid surface at diffe
times are polylines. For example, the polylines describing the two-dimensional profiles
the container, the extrudor, and the fluid surface at each instant of time were generate
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]
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1 ;

FIG. 4. Primitives used to generate the three-dimensional view of the cavity filling problem (see Fig. 11).

illustrated in Fig. 4. The profiles for the jet flow, the splashing drop and the cavity-fillir
simulations at different times (see Section 7) were rotated aboutales, generating the

three-dimensional visualization shown in Figs. 6-10, 13, and 14, respectively. Each pic
displays the fluid flow configuration at a different time. The complete set of images may

recorded as a video file for animation of the flow simulation. Details on the data conversi

file formats, and visualization can be found in [45].

7. NUMERICAL EXAMPLES AND QUALITATIVE VALIDATION
In this section we shall consider three problems: a vertical jet plunging into a fluid

splashing drop, and container filling by extrusion from a circular nozzle.

7.1. Jet Flow Experiment
In an important early work Taylor [43] experimented with jet flows. In particular, h
injected a jet into a box containing the same fluid and this he did for four different fluids. |
identified the jet by coloring it while leaving the fluid in the box uncolored. By maintainin

the nozzle diameteld and the inlet velocity/ constant (see Fig. 5), any differences in the
flows were only due to differences in the Reynolds number, the Froude number remair
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FIG. 5. Jet flow experiment.

constant throughout. The experiments were performed for the following Reynolds numb
Re=0.05, 10, 200, and 3000. It was seen that in the case o£R5 the simulated highly
viscous fluid produced a compression stress causing the jet to buckle on reaching the
surface of the quiescent fluid and so not penetrate the mass of fluid contained within
box. For Re= 3000 the jet quickly broke up, causing rapid mixing and turbulence. For t
other two experiments the jet bore into the fluid with a mushroom-like head formed at
front. We observe, from Taylor’s photographic evidence (see Fig. 8a), that ferlRehe
jet penetrates only a few jet diameters before spreading out into a mushroom-like head
higher Reynolds number fluids (Re200) the mushroom-like head is also observed (se
Fig. 9a), but in this case the jet penetrates the fluid until the bottom of the box is reacht
To validate the technique presented in this paper we have simulated a jet impinging
box of quiescent fluid so that a comparison with Taylor’s results may be effected. We use
cylindrical box of diameter 12 cm and height 16 cm from which a colored jet falls vertical
into the box at a prescribed velocity of 50 crtgsee Fig. 5). The no-slip condition was
applied on the box walls while on the axis of symmetry the symmetry condition (see [3
was applied. The convergence criteria for the Poisson equation was: E@$ and three
particles per cell were employed to represent the free surface of the fluid. To simulate
incoming jet, a round nozzle of diametér=4 mm and 3 cm length was set 1 cm above the
fluid surface in the box, from which the fluid jet travels at a constant velocity of 50ém's
Gravity was acting downward wit, = —1 and the gravitational constant was taken tc
be g=981 cms?; this gave a Froude number of Er LD = 2.52409. A mesh size of
dr = 8§z = 0.05 cm was employed (122 400 cells within the mesh). Two runs were
performed; the difference between these were only due to the value of viscosity. In
first run we set = 2.0 cn? s~ and for the second run we used= 0.1 cn?s™%, giving
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Reynolds numbers of

Re= ? =10, and Re= ? = 200,
respectively. Figure 6 displays a series of snapshots of the jet flow simulation fofiRat
different times. Figure 7 displays the time evolution of the=R200 simulation. Figure 8a
displays Taylor's photograph for the case ofR&0 and Fig. 8b displays a front view
of the three-dimensional jet shown in Fig. 8c. Figure 9a displays Taylor’s photograph
the case of Re-200 and Fig. 9b displays a front view of the three-dimensional jet show

FIG. 6. Jet flow experiment: Re 10. Fluid flow visualization at nondimensional times: a} 15.0,
(b)t =275, (c)t =575, (d)t =1150.
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FIG. 7. Jet flow experiment: Re 200. Fluid flow visualization at nondimensional times: {a} 7.5,
(b)t=20.0, (c)t =575, (d)t =1100.

in Fig. 9c. As we can see the agreement with Taylors’s experiment is excellent althot
for the Re=200 case the simulation appears to underestimate the amount of diffusi
This demonstrates that the technique presented here can indeed cope with complic
axisymmetric flows.

7.2. Splashing Drop Simulation

We consider a pool of diameter 22 cm and height 7 cm full of a quiescent fluid. A sph
ical drop of fluid of diameter 3.2 cm was placed at a height of 3 cm above the pool with
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FIG. 8. Jet flow simulation: Re- 10. Fluid flow visualization at =1150. Comparison with experimental
data: (a) Taylor's photograph; (b) front view of the jet flow simulation; (c) three-dimensional view.
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FIG.9. Jetflowsimulation: Re- 200. Fluid flow visualization at time= 110. Comparison with experimental
data: (a) Taylor’'s photograph; (b) front view; (c) three-dimensional view.



FIG. 10. The splashing of a drop of a Newtonian fluid: fluid flow visualization at different times.

459
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initial velocity of —100 cms?. It was then allowed to fall under gravity into the pool. The
cell size employed wasr =§z=0.2 cm; gravity was taken to bg=—981 cms?; and
viscosity was chosen to be= 3 cn? s~1. The scaling parameters were sefite- 100cm st
andL = 3.2 cm, giving Re=106.667 and Fi= 1.7848. A series of snapshots in time of the
simulated splashing drop are displayed in Fig. 10. Itis interesting to observe that, as the
disappears within the bulk of the fluid, a thin jet emerges composed entirely of the origi
quiescent fluid. Further, a circular hydraulic jump can be observed moving away from
center.

7.3. Simulation of Container Filling

Many manufacturing industries are concerned with extruding their product into a cc
tainer. Often the fluid product (e.g., paint, milk, or molten alloys) is hon-Newtonian ar
GENSMAC has been demonstrated to deal with such fluids (see [40]). An extension to n
Newtonian fluids (e.g., generalized Newtonian fluids using the cross and power-law mod
is not difficult and closely follows the discussion in [40]. Next we present the simulation
the filling of two popular containers which are commonly used by the industry.

Simulation of the filling of a circular tub. Here we shall simply consider the extrusion
of a Newtonian fluid into a “circular tub” from a cylindrical nozzle (see Fig. 11a); The flov
domain is assumed to be as shown in Fig. 11b. The code was run with the following in
data:

U = 100 cms? (nozzle velocity)
D = 1 cm (nozzle diameter)
v = 50 cnf s~ (fluid kinematic viscosity).
This gave a Reynolds number of R&J D /v = 2.0 and a Froude number of &r3.193. The

flow domain was defined by settihg =5 cm,L, =4 cm,andH =6 cm (see Fig. 11b). The
nozzle was placed at a distance of 1 cm above the tub. A mesh spading:62=0.1 cm

L,

FIG. 11. The filling of a circular tub.
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FIG. 12. Simulation of the filling of a circular tub: fluid flow visualization at different times.

was employed. The simulated fluid plots are displayed at a sequence of given time
Fig. 12. This fill represented a reasonably successful industrial fill: there was no spill:
through splashing, spluttering, or sloshing although the final product may exhibit the p
nomenon known in the trade as doming—that is, the surface of the final product may
be entirely horizontal and may slope down at the sides.
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FIG. 13. The filling of a bottle.

Simulation of the filling of a bottle. To demonstrate that the code can cope with complex
shaped domains we simulated the filling of a curved bottle with a Newtonian fluid (s
Fig. 13a). The following data were employed:

U = 100 cms? (nozzle velocity)
D = 1.4 cm (nozzle diameter)

v = 50 cn? s~ (fluid kinematic viscosity).

This gave a Reynolds number of R&J D /v =2.8 and a Froude number of £r2.6984.
The flow domain was defined by the set of points shown in Fig. 13b. The mesh spac
chosen wasr =86z=0.1 cm (34x 286 cells within the mesh), the convergence criteri
for the Poisson equation w&PS= 107, and three particles per cell were used to repre
sent the fluid surface. A nozzle having 4 cm length was situated 1.5 cm above the bo
Figure 14 displays the simulated fluid flow configuration at different times.

8. VALIDATION AND CONVERGENCE RESULTS

In this section we present quantitative evidence showing that the technique prese
in this paper does converge to the solution of the underlying Egs. (1)—(3) presente
Section 2.
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FIG. 14. Simulation of the filling of a bottle. Fluid flow visualization at different times: (& 10.715,
(b)t =17.150, (c)t =32.150, (d)t =50.000, (e)t =85.715, (f)t =135715, (g)t = 189286, (h)t =212159.
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8.1. Comparison with Linear Theory for Standing Waves

The problem we considered for validating the code consists of an axisymmetric ir
tational flow (cylindrical pool) with a sufficiently small surface displacement. We hav
compared the computed and the analytical solutions, using linear theory for axisymme
standing gravity waves. It is easy to show that the solution to this problem is compose
linear combinations of modes of the form (see Stoker [46])

u(r, z,t) = —Amcogot) J;(mr) coshm2) (28)
v(r, z,t) = Amcogot)Jo(mr) sinh(m2) (29)
Er,t) = A; sin(ot) Jo(mr) cosimH), (30)

whereg is the gravity and = ,/gmtaniim H) is the angular frequency of the waud.is
the initial depth of the pooR is the radius of the poaf is a constant such thdi(mR) = 0,
A is a small arbitrary constant defining the wave amplitude, &aigdthe displacement of
the free surface with respect to the initial surface.

The initial profile of the velocities and the surface elevation are obtained by taking
in (28)—(30). It is easily seen that the solution, defined by (28)—(30), satisfies the followi
boundary conditions (see Fig. 15):

du(r,zt) _ du(r,zt) _ au(r,zt) _
Er)rz r=0 " 0 Er)rz r=R 0 uér)zz z=0 0
u@,zt)=0 uUuR,z,t)=0 v(r,0,t) =0
We solved the problem depicted in Fig. 15 for different input data and compared the |

merical solutions to the exact solutions given by (28)—(30). Next we present the result:
some representative simulations. The following data were employed:

e v=01,9=-1,H = 7.6251,
o L=U=1,r =5z=0.0766342.

The parametersn and R were varied; all other parameters were held fixed. Quantitativ
results, summarized in Table |, show reasonable agreement between the analytical
the calculated frequency of oscillation and the maximum amplitude of the wave elevati
Nonetheless, the differences are significant. These, we believe, are due to the fact that w
solving the full Navier—Stokes equations; the analytic expressions (28)—(30) are, of cou

(0,0) (R,0)

FIG. 15. Problem definition for the wave simulation.
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TABLE |
m R Oexact Ocalc %-error goact geale %-error
1.00 3.8317 0.9905 0.9844 0.6158 0.3813 0.3408 10.610
0.50 7.6634 0.7000 0.7064 0.9116 0.3813 0.3646 4.3685
0.25 15.327 0.4844 0.4872 0.5881 0.3813 0.3722 2.3781

only valid for potential irrotational flow. Further evidence of this is provided in Table | sinc
it can be seen that the differences decrease as the radius of the pool increases: the larg
wavelength the smaller will be the nonlinear and viscous effects since both the depth
the maximum amplitude of the wave were held fixed. fee 0.25 andR = 15.327, Fig. 16
displays the time evolution of the surface elevation at 0 (i.e.,£(0,t) + H). It can be
seen that there is good agreement between the numerical and analytical results. Figu
shows the spatial variation of the surface elevation at tira€f-. This corresponds to the
first crest of the wave. Again, we can observe that there is good agreement between the
solutions.

8.2. Mesh Refinement

To demonstrate that the method of this paper does in fact converge as the mesh is re
we have performed three calculations with decreasing mesh spacings, both for the spla:
drop and for the cavity filling problem.

For the splashing drop the following input data were employed:

e acylindrical pool of quiescent fluid, diameter 22 cm and height 7 cm.

8.1 T T T T T T

7.9

7.8

7.7

7.6

75

7.4

73

7.2

0 2 4 6 8 10 12

FIG. 16. Time evolution of the surface elevationrat 0; — numerical solution;- - - analytical solution.
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FIG. 17. Spatial variation of the surface elevatiortat 7-; — numerical solution; - - - analytical solution.

e a spherical drop of fluid of diameter 3.2 cm positioned initially 3 cm above th
center of the pool with an initial velocity = —100 cms?.

e gravity assumed to be acting in the negatiwdirection; i.e.,g, = —981 cms2.

e kinematic viscosity =3 cn?st.

e scaling parameters = 3.2 cm (diameter of the drop)) =100 cm s (initial ve-
locity of the drop), giving rise to Re: 10667 and Fr=1.7848.

e no-slip conditions applied on the side walls.

e Three particles per cell employed to represent the free surface of the fluid.

Figure 18 displays the configuration of the splashing drop simulation and its corresponc
velocity field, calculated using the above data and three different mesh spacings. For
first run (see Fig. 18a) we employed a mesh spacingyr ef §z= 0.4 cm which gave a
mesh size of 2& 35, for the second run (see Fig. 18b) we uéed- §z=0.2 cm, giving
a mesh size of 5& 70 and in the third run (see Fig. 18c) we employed a mesh spacing
dr =38z=0.1 cm which produced a mesh size of 14240.

We also considered the cavity filling problem presented in Section 7.3 and perforn
three runs to check the convergence of the finite difference solution as the mesh is refi
The following data were employed:

e a wedge-shaped circular container with dimensibps-10 cm,L,=4 cm, and
H =7 cm (see Fig. 12b).

e nozzle diameteD =1.6 cm.

e gravity was assumed to be acting in the negatidérection; i.e.g, = —981 cm s2.

e kinematic viscosity =50 cn? s 2.

e scaling parameters = 1.6 cm (diameter of the nozzle)) =100 cms? (fluid
velocity at the nozzle) giving rise to Re3.2 and Fr=2.52409.
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FIG.18. Simulation of splashing drop on different grids. (a) grid285; (b) grid 56x 70; (c) grid 112x 140.
Fluid flow visualization and velocity plot at= 0.46875.

o three particles per cell on the free surface.
e no-slip conditions applied on the container walls.

It should be stressed that the only difference between runs, in both cases, were the |
spacings.

Figure 19 displays the fluid flow configuration of the jet filling and its correspondin
velocity field at the nondimensional time b 59.375 on the three meshes. For the first
run (see Fig. 19a) we employed a mesh spacingr ef 5z= 0.4 cm which gave rise to a
13 x 23 grid, for the second run (see Fig. 19b) we uséd & §z= 0.2 which produced a
26 x 46 grid, while for the third run (see Fig. 19c) the mesh spacings were chosen to
8r =8z=0.1resulting in a mesh size of 5292 cells.

In both cases the figures suggest that convergence is being obtained.

8.3. Convergence Study

The results of the previous section show that the method converges as the mesh |
fined. To obtain an estimate of the rate of convergence we performed a number of |
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FIG. 19. Simulation of cavity filling on different grids. (a) grid 2323; (b) grid 26x 46; (c) grid 52x 92.
Fluid flow visualization and velocity plot at=59.375.

for the container filling problem on a set of increasingly finer grids. We considered t
problem depicted in Fig. 11 with; =L, =4.5cm,H=8cm,U =2ms!, D=1.92cm,
v =280 cn?s~%, and gravity acting in the negativedirection withg= —9.81 ms2. This
gave a Reynolds number of Re4.8 and a Froude number of £r4.6083. A total of nine
runs were performed on the following grids: Mesthl=£ 0.0032), Mesh Il f=0.0024),
Mesh Il (h=0.0016), Mesh IV f=0.0012), Mesh V [l = 0.008), Mesh VI fi=0.0006),
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TABLE Il
I,-norm of the Errors in the Velocity Field and
Pressure for Different Mesh Spacings

h U —Unllz [V = Vhll2 [IP = Phll2
0.0032 0.0255 0.0893 0.4689
0.0024 0.0253 0.0556 0.4807
0.0016 0.0222 0.0486 0.1826
0.0012 0.0218 0.0423 0.1580
0.0008 0.0142 0.0264 0.1076
0.0006 0.0097 0.0180 0.1243
0.0004 0.0053 0.0092 0.0621
0.0003 0.0026 0.0045 0.0510

469

Mesh VII (h =0.0004), Mesh VIII f = 0.0003), and Mesh IXH{ = 0.0002). As an analytic

solution for this problem is not known we supposed that the solution on the finest m
(Mesh IX) is the exact solution and computed ts@ormof the errors between this “exact

solution” and those on the coarser grids. Table Il displaydherm of the errors for

the velocity components and pressure. These errors were calculated on the coarses
(Mesh 1) by considering only full cells using the Matlab routine Interp2 to interpolate frol
the finer grids. The reason for considering the full cells only was that there were pointsr
the boundaries on the coarsest grid which were not defined on the finer grids so that ¢

comparison could not have been properly made.

01 F

0.05 |

0.01 i

0.005

FIG. 20. Convergence rate study of the velocity componertserror in Uy, ---
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0.0015 0.0025
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FIG. 21. Convergence rate study of the pressure fiélarror in P,, --- best fit (01100x 10° h®951%),

As we can see from Table Il, the errors in the velocity components are monoto
cally decreasing while the pressure displays an oscillatory behavior. We believe that
oscillatory behavior in the pressure, particularly foe 0.0006, can be attributed to the
fact that the boundaries do not fit the mesh lines exactly. In order to obtain an estirr
of the rate of convergence a least square line is fitted to the log—log data in Table II;
convergence rate is then given by the slope of the fitted line. Figure 20 displays the log-
plot of thel,-normerror of the velocity components and Fig. 21 displayd th@ormerror
for the pressure. The slope for tlhieerror is 0925, for thev-error it is 115, while for
the pressure the slope i9D20. These convergence estimates are necessarily only apprc
mate. Furthermore, if we neglect the less accurate solutions and stati f2dh016 then
higher convergence estimates may be obtained for the velocity components. Indeed
convergence rate appears then to be closer to 1.5 forualdv. In conclusion, numerical
convergence estimates have been obtained and the results show that the method pre:
in this paper is convergent of at led3th).

9. CONCLUSIONS

The GENSMAC code has been extended to cope with axisymmetric flows. The com
tational efficiency of the original code has been greatly increased with the use of surf
marker particles only. A graphic interface permits easy data input while the ideas of st
modeling are employed to provide an output facility in the form of three-dimensional vis
alization. Several examples have been included, including a comparison with G. |. Tayl
experiment of a jet impinging onto a quiescent fluid. Finally, a comparison with standi
waves and numerical convergence estimates were also provided.
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